in that it is disubstituted at the atom α to the carbonyl C atom.

We acknowledge the support of the US National Science Foundation for the purchase of the Nicolet $R 3 m$ diffractometer and computing system.

References

Clardy, J., Springer, J. P., Buchi, G., Matsuo, K. \& Wightman, R. (1975). J. Am. Chem. Soc. 97, 663-665.

Im, M. (1990). Private communication.
Lenstra, A. T. H., Petit, G. H. \& Geise, H. J. (1979). Cryst. Struct. Commun. 8, 1023-1029.
Sheldrick, G. M. (1983). SHELXTL Users Manual. Revision 5. Nicolet XRD Corporation, Madison, Wisconsin, USA.
Sinclair, P. J., Zhai, D., Reibenspies, J. \& Williams, R. M. (1986). J. Am. Chem. Soc. 108, 1103-1104.

Smith, J. L., Chwang, A. \& Sundaralingam, M. (1980). Acta Cryst. B36, 833-837.
Zhukhlistova, N. E., Smirnova, V. I., Tishchenko, G. N. \& Andrianov, V. I. (1977). Kristallografiya, 22, 77-81.
Zhukhlistova, N. E. \& Tischenko, G. N. (1980). Kristallografiya, 25, 274-279.

Acta Cryst. (1991). C47, 1998-2000

Tricyclo[8.2.1.0 ${ }^{2,9}$]trideca-5,11-dien-13-one

By J. Gabriel Garcia, Frank R. Fronczek and Mark L. McLaughlin*
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA

(Received 19 November 1990; accepted 4 March 1991)

Abstract

C}_{13} \mathrm{H}_{16} \mathrm{O}, \quad M_{r}=188 \cdot 3\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=8.6255(12), \quad b=8.8372$ (12), $\quad c=$ 13.6741 (7) $\AA, \quad V=1042.3$ (3) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.200 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54184 \AA, \quad \mu=$ $5.36 \mathrm{~cm}^{-1}, F(000)=408, T=297 \mathrm{~K}, R=0.031$ for 1785 observations with $I>3 \sigma(I)$ (of 2138 unique data). The cyclooctene ring adopts the twist-boat conformation. There is a near-zero torsion angle of the boat at the ring-fusion bond, with magnitude of $-2.8(2)^{\circ}$. The torsion angles about the bonds comprising the sides of the boat are $33.8(2)$ and 18.5 (2) ${ }^{\circ}$. The cyclooctene and norbornenone $\mathrm{C}=\mathrm{C}$ bonds have lengths of 1.297 (3) and $1 \cdot 318$ (2) \AA, respectively, and the $\mathrm{C}=\mathrm{O}$ bond length is $1 \cdot 205$ (2) A.

Experimental. The title compound was prepared by allowing one equivalent of 1,1 -dimethoxy-2,3,4,5tetrachlorocyclopentadiene to react with eight equivalents of 1,5 -cyclooctadiene neat at $406-413 \mathrm{~K}$ (Akhtar, Fray \& Yarrow, 1968) followed by reduction in sodium-ethanol and hydrolysis with sulfuric acid-water-ether (Eaton, Sidhu, Langford, Cullison \& Pietruszewski, 1987).

[^0]Crystals that deposited from the reaction flask, m.p. 338-340 K, were suitable; a clear colorless crystal with dimensions $0.15 \times 0.18 \times 0.32 \mathrm{~mm}$ was used for data collection on an Enraf-Nonius CAD-4 diffractometer with $\mathrm{Cu} K \alpha$ radiation and a graphite monochromator. Cell dimensions were determined from setting angles of 25 reflections having $30>\theta>$ 25°. The $\omega-2 \theta$ scans were designed for $I=20 \sigma(I)$, subject to max. scan time $=60 \mathrm{~s}$, scan rates varied from $1 \cdot 0-4 \cdot 1^{\circ} \mathrm{min}^{-1}$. A hemisphere of data having 2 $<\theta<75^{\circ}, 0 \leq h \leq 10,-11 \leq k \leq 11,-17 \leq l \leq 17$ was measured and corrected for background, Lorentz, polarization and decay. ψ scans of four reflections exhibited no decrease in intensity with rotation about the diffraction vector, thus no absorption correction was applied. Three standard reflections $(400,031,006)$ decreased in intensity by 5.0% apparently due to sublimation and a linear correction was applied. 4637 data were measured, equivalent data were averaged, $R_{\text {int }}=0.014$, yielding 2138 unique data. Systematic absences $h 00$ with h odd, 0 k 0 with k odd and $00 l$ with l odd indicated space group $P 2_{1} 2_{1} 2_{1}$. The structure was solved by direct methods using RANTAN (Yao, 1981), refined by full-matrix least squares based upon F, using data for which $I>$ $3 \sigma(I)$, weights $w=4 F_{o}^{2}\left[\sigma^{2}(I)+\left(0.02 F_{o}^{2}\right)^{2}\right]^{-1}$ using the Enraf-Nonius Structure Determination Package (Frenz \& Okaya, 1980), scattering factors of Cromer \& Waber (1974), and anomalous coefficients of Cromer (1974). Heavy-atom coordinates were refined with anisotropic thermal parameters; H -atom coordinates were located by ΔF and were refined with
(C) 1991 International Union of Crystallography

Table 1. Coordinates and equivalent isotropic thermal parameters

$B_{\mathrm{cq}}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
	x	$0.4059(2)$	$0.89767(9)$	$6.72(3)$
O	$0.6674(1)$	$0.5348(1)$	$0.81568(9)$	$3.42(2)$
C1	$0.3318(1)$	$0.5000(2)$	$0.92635(9)$	$3.61(2)$
C2	$0.2987(1)$	$0.4894(2)$	$0.9581(1)$	$4.83(3)$
C3	$0.1300(2)$	$0.6448(2)$	$0.9835(2)$	$7.57(5)$
C4	$0.0595(2)$	$0.7797(2)$	$0.9280(1)$	$5.75(4)$
C5	$0.1116(2)$	$0.7908(2)$	$0.8336(2)$	$5.94(4)$
C6	$0.1216(2)$	$0.6693(2)$	$0.7647(1)$	$6.81(4)$
C7	$0.0758(2)$	$0.5496(2)$	$0.7437(1)$	$5.03(3)$
C8	$0.1974(2)$	$0.4033(2)$	$0.7847(1)$	$3.99(3)$
C9	$0.4429(2)$	$0.2571(2)$	$0.7908(1)$	$4.69(3)$
C10	$0.3550(2)$	$0.2279(2)$	$0.8835(1)$	$5.26(3)$
C11	$0.3259(2)$	$0.3518(2)$	$0.9446(1)$	$4.62(3)$
C12	$0.3929(2)$	$0.3885(2)$	$0.8797(1)$	$4.42(3)$
C13	$0.5319(2)$			

Table 2. Bond distances (\AA), angles $\left({ }^{\circ}\right)$ and selected torsion angles (${ }^{\circ}$)

O-C13	$1 \cdot 205$ (2)	C5-C6	$1 \cdot 297$ (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.571 (2)	C6-C7	1.483 (3)
$\mathrm{C} 1-\mathrm{C} 8$	1.526 (2)	C7-C8	1.517 (2)
$\mathrm{Cl}-\mathrm{C} 9$	1.565 (2)	C9-C10	1.500 (2)
C2-C3	1.522 (2)	C9-C13	1.514 (2)
$\mathrm{C} 2-\mathrm{Cl} 2$	1.561 (2)	$\mathrm{Cl} 0-\mathrm{Cl} 1$	1.318 (2)
C3-C4	1.542 (2)	$\mathrm{Cl1-Cl2}$	1.494 (2)
C4-C5	1.483 (3)	C12-Cl3	1.526 (2)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 8$	$120 \cdot 0$ (1)	$\mathrm{Cl}-\mathrm{C} 9-\mathrm{Cl0}$	108.4 (1)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 9$	$103 \cdot 1$ (1)	$\mathrm{Cl}-\mathrm{C} 9-\mathrm{Cl} 3$	98.2 (1)
C8-Cl-C9	$110 \cdot 8$ (1)	C10-C9-C13	97.8 (1)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	117.5 (1)	C9- $\mathrm{C} 10-\mathrm{Cl1}$	108.5 (1)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl2}$	102.9 (1)	$\mathrm{C} 10-\mathrm{Cl1-Cl2}$	108.7 (1)
C3-C2-C12	113.6 (1)	$\mathrm{C} 2-\mathrm{C} 12-\mathrm{Cl1}$	108.9 (1)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	112.7 (1)	$\mathrm{C} 2-\mathrm{C} 12-\mathrm{Cl} 3$	97.9 (1)
C3-C4-C5	118.8 (2)	$\mathrm{Cl1}-\mathrm{Cl2}-\mathrm{Cl} 3$	97.7 (1)
C4-C5-C6	126.2 (2)	O-Cl3-C9	131.0 (1)
C5-C6-C7	124.0 (2)	$\mathrm{O}-\mathrm{Cl} 3-\mathrm{Cl2}$	$132 \cdot 1$ (2)
C6-C7-C8	$116 \cdot 1$ (1)	$\mathrm{C} 9-\mathrm{Cl} 3-\mathrm{Cl} 2$	$96 \cdot 8$ (1)
$\mathrm{Cl}-\mathrm{C} 8-\mathrm{C} 7$	117.6 (1)		
C8-C1-C2-C3	-2.8(2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-85.5 (2)
C2-C1-C8-C7	58.4 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$33 \cdot 8$ (2)
C6-C7-C8-Cl	18.5 (2)	C4-C5-C6--C7	2.5 (3)
C3-C4-C5-C6	48.7 (3)	C5-C6-C7-C8	-85.0 (2)

isotropic thermal parameters. Final $R=0.031$ for 1785 observed data (0.041 for all 2138 data), $w R=$ 0.037 , and $S=1.456$ for 192 variables. Max. shift 0.09σ in the final cycle, max. residual density 0.18 , $\min .-0.13 \mathrm{e} \AA^{-3}$, and extinction coefficient $g=$ $9.34(12) \times 10^{-6}$ where the factor $\left(1+g I_{c}\right)^{-1}$ was applied to F_{c}. The fractional coordinates of the title compound are given in Table 1. Fig. 1 is a perspective drawing showing the atom numbering. Fig. 2 illustrates the unit cell. Bond distances, angles, and selected torsion angles are presented in Table 2.*

[^1]Related literature. Bond lengths and bond angles $\mathrm{C} 1-\mathrm{C} 2 \quad 1.571(2), \quad \mathrm{C} 10-\mathrm{Cl1} \quad 1.318$ (2) \AA and C8-Cl—C9 $110 \cdot 8(1)^{\circ}$ of tricyclo[8.2.1.0 ${ }^{2,9}$]trideca-5,11-dien-13-one are similar to those of endo,-endo,anti-1,6,7,8,9,14,15,16-octachloropentacyclo[12.2.1.1 $\left.{ }^{6,9} .0^{2,13} .0^{5,10}\right]$ octadeca- 7,15 -diene $\quad[\mathrm{C} 1-\mathrm{C} 2$ 1.587 (3), $\mathrm{C} 10-\mathrm{C} 111.327$ (3) \AA and $\mathrm{C} 8-\mathrm{Cl}-\mathrm{C} 9$ $114 \cdot 1$ (2) ${ }^{\circ}$] (Garcia, Fronczek \& McLaughlin, 1991a) and to those of endo,endo,anti-1,6,7,8,9,14,15,-16-octachloro-17,17,18,18-tetramethoxypentacyclo[12.2.1.1 ${ }^{6,9} .0^{2,13} .0^{5,19}$]octadeca- 7,15 -diene $\quad[\mathrm{C} 1-\mathrm{C} 2$ 1.579 (3), $\mathrm{C} 10-\mathrm{C} 11 \quad 1.324(3) \AA$ and $\mathrm{C} 8-\mathrm{Cl}-\mathrm{C} 9$ 113.2 (2) ${ }^{\circ}$] (Garcia, Fronczek \& McLaughlin, 1991b). The C5-C6 bond distance of $1-297$ (3) \AA for the title compound is in agreement with that of trans-spiro[bicyclo[6.3.0]undec-4-ene-10,2'-[1,3]-dioxolane]-2,2,7,7-tetracarboxylate, $\quad 1 \cdot 319$ (4) \AA (Bertram, Jansen, Peters, Meier \& Winterfeldt, 1986). Torsion angle $\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ at the ring fusion bond is $-2.8(2)^{\circ}$ in accordance with those of endo,-endo,anti-1,6,7,8,9,14,15,16-octachloropentacyclo[12.2.1.1 ${ }^{6,9} .0^{2,13} .0^{5,10}$]octadeca-7,15-diene [-0.3(3) ${ }^{\circ}$] (Garcia et al., 1991a), and endo,endo,anti-1,6,7,8,9,14,15,16-octachloro-17,17,18,18-tetramethoxypentacyclo $\left[12.2 .1 .1^{6,9} \cdot 0^{2,13} .0^{5,10}\right]$ octadeca- $7,15-$ diene $\left[1.8(3)^{\circ}\right]$ (Garcia et al., 1991b).

Fig. 1. ORTEP (Johnson, 1965) drawing of the molecule, representing C atoms as 30% probability ellipsoids and H atoms as circles of arbitrary radius.

Fig. 2. Stereoview of the unit cell. \mathbf{c} is vertical, \mathbf{b} is horizontal and \mathbf{a} is into the plane of the paper.

The cyclooctene ring has a twist-boat conformation, with torsion angles $\omega_{1} \mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8, \mathrm{C} 4-$ C5-C6-C7, $\omega_{2} \mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7, \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-$ $\mathrm{C} 4, \mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6, \mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ and ω_{3} $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5, \mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$ of $\omega_{1}=$ $-2.8(2), \omega_{2}=58.4$ (2), -85.5 (2) and $\omega_{3}=33.8$ (2), $18.5(2)^{\circ}$ that are distorted from the ideal boat $D_{2 d}$ conformation (of cylooctane) having torsion angles of $\omega_{1}= \pm 0, \quad \omega_{2}= \pm 76.4$ and $\omega_{3}= \pm 0^{\circ}$ (Hendrickson, 1964), and $\omega_{1}= \pm 0, \omega_{2}= \pm 73 \cdot 4$, and $\omega_{3}= \pm 0^{\circ}$ (Ivanov \& Osawa, 1984).

We thank the Louisiana Educational Quality Support Fund Grant No. LEQSF(1987-90)-RD-A-5 for support of this research.

References

Akhtar, I. A., Fray, G. I. \& Yarrow, J. M. (1968). J. Chem. Soc. C, pp. 812-815.

Bertram, H.-J., Jansen, M., Peters, K., Meier, A. \& Winterfeldt, E. (1986). Justus Liebigs Ann. Chem. pp. 456-464.
Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Eaton, P. A., Sidhu, R. S., Langford, G. E., Cullison, D. A. \& Pietruszewski, C. L. (1987). Tetrahedron, 37, 4479-4493.
Frenz, B. A. \& Okaya, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Garcia, J. G., Fronczek, F. R. \& McLaughlin, M. L. (1991a). Acta Cryst. C47, 451-453.
Garcia, J. G., Fronczek, F. R. \& McLaughlin, M. L. (1991b). Acta Cryst. C47, 206-209.
Hendrickson, J. B. (1964). J. Am. Chem. Soc. 86, 48544866.

Ivanov, P. M. \& Osawa, E. (1984). J. Comput. Chem. 5(4), 307-313.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Yao, J.-X. (1981). Acta Cryst. A37, 642-644.

Acta Cryst. (1991). C47, 2000-2002

5-Methyl-4-(1-piperidyl)-5-trifluoromethyl-1,2-oxathiole

By B. Tinant and J.-P. Declerce
Laboratoire de Chimie Physique et de Cristallographie, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium
and C. Maliverney and H. G. Viehe
Laboratoire de Chimie Organique de Synthèse, Université Catholique de Louvain, 1 place Louis Pasteur, 1348 Louvain la Neuve, Belgium

(Received 12 November 1990; accepted 18 February 1991)

Abstract. $\quad \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}, \quad M_{r}=285 \cdot 28$, orthorhombic, $P c a 2_{1}, a=9.324$ (2), $b=12.038$ (3),$c=$ $11.252(3) \AA, \quad V=1263.0(5) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.50 \mathrm{~g} \mathrm{~cm}^{-3}$, Мо $K \alpha, \lambda=0.71069 \AA, \mu=2.97 \mathrm{~cm}^{-1}$, $F(000)=592, \quad T=291 \mathrm{~K}, \quad R=0.032 \quad$ for 1124 observed reflections. The five-membered unsaturated sultone ring is slightly nonplanar adopting a flat C2 half-chair conformation with endocyclic torsion angles of $5.2(8),-1.9(8),-1.8(8), 5.1(8)$ and $-6.6(8)^{\circ}$. The endocyclic $\mathrm{S}-\mathrm{O}$ and $\mathrm{S}-\mathrm{C}$ bond lengths are 1.599 (2) and 1.689 (4) \AA, respectively, and the $\mathrm{C}-\mathrm{S}-\mathrm{O}$ angle is $95 \cdot 4$ (2) ${ }^{\circ}$.

Experimental. The reaction of methanesulfonyl chloride with the sodium alcoholate of the 2-hydroxythioamide (1), in the presence of an excess of sodium hydride, leads unexpectedly to the product
(2) (Maliverney, Merenyi \& Viehe, 1990). This compound was identified as being a sultone, i.e. a cyclic sulfonate and the X-ray analysis was undertaken in order to confirm this structure and to determine the geometry of this new unsaturated heterocycle.

$$
\begin{aligned}
& \text { A: } \mathrm{NaH} 2 \mathrm{eq} ., \mathrm{THF}, 30 \mathrm{~min}, 293 \mathrm{~K} \\
& \mathrm{~B}: \mathrm{Cl}-\mathrm{SO}_{2}-\mathrm{CH}_{3} 1 \cdot 2 \text { eq., } 24 \mathrm{~h}, 293 \mathrm{~K}
\end{aligned}
$$

(2)

Parallelepiped crystal of approximate dimensions $0.35 \times 0.22 \times 0.14 \mathrm{~mm}$. Lattice parameters refined
© 1991 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed

[^1]: * Lists of structure factors, anisotropic thermal parameters, distances and angles involving H atoms, torsion angles, and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54058 (17 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

